Welcome to the Pangborn Advanced Controls Lab

We are a systems and control lab at The Pennsylvania State University, directed by Assistant Professor Herschel C. Pangborn. Broadly speaking, we study the science of automated decision-making in systems, optimizing the design and real-time operation (i.e., control) of systems with high societal relevance.

Our research enables new paradigms in the performance, safety, efficiency, and sustainability of energy systems in vehicles and buildings. Key to achieving this objective is our systems-level approach to control and design, which enables coordination across multiple components, timescales, and physical domains. The systems we study include electrified aircraft, hybrid cars, and thermal management systems in buildings and vehicles.

In addition to achieving our technological goals, we also train the next generation of engineers to address exigent challenges and opportunities in control theory, energy systems, and sustainability. This inspires our student-centric mentorship of undergraduate and graduate students in research and professional development. Our program is oriented around providing students with the experience and expertise to achieve their career goals following graduation.

Our systems-based approach intersects three areas:

Controls and Optimization

Modern energy systems are often too complex for decision-making to be governed by a single, centralized controller. We develop hierarchical and distributed control frameworks that employ a network of communicating controllers to coordinate decision-making across multiple components, timescales, and physical domains. Predictive control methods allow these frameworks to take proactive action in optimizing system behavior. We also specialize in the control of systems that exhibit switched dynamic behavior and/or have actuators with discrete modes of operation. Contributions to control theory establish guarantees on performance and safety, while closed-loop experimental application bridges the theory-practice gap. We also investigate systems-level design approaches to optimize architecture selection and component sizing for energy systems.

computer

Dynamic Modeling

We employ a combination of physics-based and data-driven methods to capture energy system dynamics across a range of timescales and physical domains. In modeling energy systems, we focus on capturing the most salient dynamic behaviors while retaining a level of computational simplicity that allows models to be leveraged for system-level design and real-time feedback control. 

Thermal and Electro-Thermal Systems

The electrification of energy systems is a technological megatrend that has transformed buildings, aircraft, automobiles, and naval ships. With electrification, the ability to manage thermal and electro-thermal interactions within energy systems has increasingly become the limiting factor of their capabilities. The modeling, design, and control approaches developed by our lab enable increased power/energy density and decreased operating costs, while bringing new paradigms in performance, safety, efficiency, and sustainability.

Recent News

11/2022:
Our IEEE TCST paper on hierarchical control for integrated propulsion, power, and thermal management of a UAV is now accessible via early access.

10/2022:
Congrats to Andrew Thompson for passing the ME Qualifying Exam!

08/2022:
Congrats to Jake Siefert for passing his comprehensive exam!

person_add

08/2022:
The PAC Lab welcomes undergraduate researcher Joseph Broniszewski!

07/2022:
Our IEEE L-CSS paper on reachability of hybrid systems is now accessible via early access. 

06/2022:
Honored to be a co-author on this year's American Control Conference Best Student Paper! It was great to present our work on two collaborative projects at ACC.

06/2022:
Congrats to Andrew Iezzi on completing his M.S. degree! Andrew will be joining Pratt & Whitney as a software engineer.

08/2021:
The PAC Lab will soon begin work on a $1.5 million collaborative grant to study autonomous hypersonic vehicle flight planning.

__________________

Copyright © 2022 Pangborn Advanced Controls Lab.  All rights reserved.